kubebuilder

Kubernetes应用平台API开发实战

前面文章介绍了通过基于go-restful框架开发API, client-go生成clientset, informers, listers来读取和写入自定义资源,基于kubebuilder开发CRD资源控制器。今天我们通过一个实例来看一下API整个开发过程。 开发步骤 1,通过kubebuilder来开发CRD控制器 2,通过client-gen,lister-gen,informer-gen生成clientset, informers, listers代码 3,开发models实现CRD资源的kubernets读写操作,读取列表时的排序,分页,过滤 4,开发handler实现CRD资源的API处理 CRD资源的读操作 CRD资源的读操作通过Informer来读取,减少API和Etcd集群的压力。 Informer的主要工作原理为:通过Reflector反射来监听Kubernetes对资源的操作事件,把资源对象和操作类型写入到一个DeltaFIFO的队列中。Reflector消费队列,将资源对象存储到indexer,indexer与Etcd集群的数据完全保持一致。 CRD资源的写操作 CRD资源的写通过client-go的clientset来完成对资源的Create,Update,Patch操作。 代码开发 这里我们需要实现上一篇讲的TrackingServer自定义资源的API。TrackingServer主要用于管理机器学习实验跟踪MLflow在k8s里的实例资源。 创建Informer informerFactories结构体实现了InformerFactory接口,这个接口有两个SharedInformerFactory,一个为Kubernetes资源的informerFactory,一个为本项目自定义资源的aiInformerFactory。aiscopeinformers.NewSharedInformerFactory创建了一个aiInformerFactory实例,这里的NewSharedInformerFactory为代码生成器生成的方法。通过代码生成器创建clientset客户端aiClient,作为参数来创建InformerFactory type InformerFactory interface { KubernetesSharedInformerFactory() k8sinformers.SharedInformerFactory AIScopeSharedInformerFactory() aiscopeinformers.SharedInformerFactory // Start shared informer factory one by one if they are not nil Start(stopCh <-chan struct{}) } type informerFactories struct { informerFactory k8sinformers.SharedInformerFactory aiInformerFactory aiscopeinformers.SharedInformerFactory } func NewInformerFactories(client kubernetes.Interface, aiClient versioned.Interface) InformerFactory { factory := &informerFactories{} if client != nil { factory.informerFactory = k8sinformers.

继续阅读

Kubebuilder开发MLflow实验跟踪控制器

前面文章讲了client-go, go-restful开发Kubernetes应用平台,今天给大家看看在这个应用平台中添加一个自定义资源控制器的开发。 需求场景: 在多租户机器学习平台中,开发一个Kubernetes控制器,实现CRD(自定义资源) TrackingServer的调谐,完成Kubernetes中对应的PersistentVolumeClaim, TLS Secret, Service, Ingress, Deployment资源管理。 功能描述: 1,当CR实例的参数中指定了VolumeSize和StorageClassName,则创建对应的PersistentVolumeClaim用于MLflow的local database sqllite的数据存储目录。当未指定时,不创建或者删除已经创建的PersistentVolumeClaim。 2,当CR实例的参数中指定了Cert和Key数据,则创建对应的TLS类型的Secret,用于Ingress的TLS证书。当未指定时,不创建或删除对应Secret。 3,查找对应命名空间和名称的Secret,如果有Ingress配置对应的TLS证书。 4,根据CR实例的参数管理Service和Deployment的创建和修改。 5,删除CR实例后,对应清理K8S资源。当删除资源时,判断被删除资源是否为CR实例的附属资源。 代码实现: 整个业务代码开发分为几个大的步骤: 1,Kubebuilder生成代码和部署文件 2,在Controller Manager中注册控制器 3,在控制器调谐代码中,实现业务逻辑 Kubebuilder中创建API 指定GVK,这里TrackingServer为我们需要的MLflow资源。 kubebuilder create api --group experiment --version v1alpha2 --kind TrackingServer kubebuilder create api --group experiment --version v1alpha2 --kind JupyterNotebook kubebuilder create api --group experiment --version v1alpha2 --kind CodeServer 自定义资源TrackingServer定义 定义VolumeSize, Cert, Key字段为omitempty,表示非必须字段。 +genclient表示代码生成器生成clientset,informer, lister代码。 printcolumn表示kubectl get资源时展示字段 // TrackingServerSpec defines the desired state of TrackingServer type TrackingServerSpec struct { // INSERT ADDITIONAL SPEC FIELDS - desired state of cluster // Important: Run "make" to regenerate code after modifying this file Size int32 `json:"size"` Image string `json:"image"` S3_ENDPOINT_URL string `json:"s3_endpoint_url"` AWS_ACCESS_KEY string `json:"aws_access_key"` AWS_SECRET_KEY string `json:"aws_secret_key"` ARTIFACT_ROOT string `json:"artifact_root"` BACKEND_URI string `json:"backend_uri"` URL string `json:"url"` VolumeSize string `json:"volumeSize,omitempty"` StorageClassName string `json:"storageClassName,omitempty"` Cert string `json:"cert,omitempty"` Key string `json:"key,omitempty"` } // TrackingServerStatus defines the observed state of TrackingServer type TrackingServerStatus struct { // INSERT ADDITIONAL STATUS FIELD - define observed state of cluster // Important: Run "make" to regenerate code after modifying this file } // +genclient // +kubebuilder:object:root=true // +kubebuilder:subresource:status // +kubebuilder:printcolumn:name="S3_ENDPOINT_URL",type="string",JSONPath=".

继续阅读